Section 1.2 : Basic notions

RMS and average values

For time dependant signals, it can be useful to know their characteristics over a certain observation time . The following values are the most commonly used characteristics.

  • The maximum and minimum values of the signal are respectively the highest and lowest points of the signal over a period .

  • The average of a signal is given by :

    .

  • The RMS value of a signal is given by :

    .

RemarqueRemark

For periodic signals, the RMS and average value are calculated over a whole number of periods.

  • Illustration for a sine wave with a continuous component (DC) equal to  :

Pierrick Lotton and Manuel MELON

ExempleExample

Calculate the RMS value of the signal .

The integral of is equal to zero, as it is done over two periods.

We therefore have :

Finally, we obtain :

PrécédentPrécédentSuivantSuivant
AccueilAccueilImprimerImprimer Pierrick Lotton and Manuel Melon Paternité - Pas d'Utilisation Commerciale - Partage des Conditions Initiales à l'IdentiqueRéalisé avec Scenari (nouvelle fenêtre)